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FINAL PERFORMANCE REPORT

Abstract 

At low Earth orbits (LEO), a differential in the drag acceleration between spacecraft can be used to 

control their relative motion. This differential allows for a propellant-free method for performing relative 

maneuvers, which can reduce the costs of spacecraft formations. In this project atmospheric differential 

drag (DD) based nonlinear controllers are presented that can be used for planar relative maneuvers of two 

spacecraft. The controllers were tested using high fidelity Systems Tool Kit (STK) simulations for re-

phase, fly-around, and rendezvous maneuvers. Furthermore, the atmospheric density varies in time and in 

space as the spacecraft travel along their orbits. In this project a localized density predictor based on 

Neural Networks (NNs) was also developed. The predictor uses density measurements or estimates along 

the past orbits and can use a set of proxies for solar and geomagnetic activities to predict the value of the 

density along the future orbits of the spacecraft. The performance of the localized predictor is studied for 

different NN structures, testing periods of high and low solar and geomagnetic activity and different 

prediction windows. Comparison with previously developed methods show substantial benefits in using 

neural networks, both in prediction accuracy and in the potential for spacecraft onboard implementation.  

List of symbols 

a, b, c, d Constants in Schweighart and Sedwick model  

aDrel  Magnitude of the aerodynamic drag acceleration experienced 

by spacecraft 

aDcrit  Magnitude of the differential drag acceleration than ensures 

stability  

Prela
Differential accelerations caused by any additional perturbations 

Abc Element of matrix Ad to which aDcrit is the most sensitive 

Ad Stable linear reference state space matrix 

As Schweighart and Sedwick model state space matrix 

B Spacecraft’s ballistic coefficient, also bias in the context of the  

neural network predictors 

CD Spacecraft drag coefficient  

D Number of delays in the hidden layer 

Dst Geomagnetic index 

e Tracking error vector  

Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag



f(·)   Nonlinearities in the spacecraft dynamics, or nonlinearities in general in the  

   context of Lyapunov stability, also nonlinear function in the context of the neural 

   network predictors 

F10.7   Solar index 

it   Target’s initial orbit inclination 

J2   Second-order harmonic of Earth gravitational potential field (Earth   

   flattening)  

lb, up  Lower and upper bounds for the optimization 

m   Spacecraft’s mass 

n   Mean motion  

ns    Number of samples in a data set 

P, Pv  Solution matrix of the Lyapunov equation and its vectorized form 

Q, Qv  Selected Lyapunov equation matrix and its vectorized form 

Rp   Pearson correlation coefficient 

Re   Earth mean radius  

S   Spacecraft cross-wind section area for chaser and target spacecraft 

ts   Sampling period of the density data  

T1, T2, T3, T4  Matrix transformations 

ud   Feedback linear control for reference system 

û   On-off control signal 

Unxn, U1, U2  Permutation matrices 

V   Lyapunov function 

Wp    Prediction window  

xn   State space vector including relative position and velocity of the    

   spacecraft system in the LVLH orbital frame 

xd   Linear reference model state space vector in the LVLH orbital    

   frame 

ΔB   Ballistic coefficient differential 

δA   Magnitude of the modification made to matrix Ad using the    

   switching adaptation 

δAop   Modifications made to matrix Ad for the optimized adaptation 

    Neural network input 

μ   Gravitational parameter 

    Neural network output 



ρ   Atmospheric density 

 ̂   Predicted Atmospheric density 

    Neural network target value 

 



1. Introduction 

Leonard et al. [1] introduced the concept of DD as an alternative method for generating the control 

forces required by the relative maneuvers on the orbital plane at LEO. The method consists of varying the 

aerodynamic drag experienced by different spacecraft, thus generating differential accelerations between 

them. The interest towards this methodology comes from the desire for efficient, autonomous spacecraft 

relative maneuvering. To increase the efficiency and economic viability of such maneuvers, propellant 

consumption must be reduced. Furthermore, since there is no propellant exhaust, sensitive onboard 

sensors will not be affected during maneuvers. However, maneuvering using DD requires the ability to 

generate magnitudes of differential acceleration larger than the accelerations caused by any other 

perturbations; hence, the spacecraft must be able to change their ballistic coefficients by the necessary 

amounts and their orbits must be low enough for providing enough drag force. Additionally, DD results in 

increased orbital decay. 

Using DD for spacecraft relative maneuvering presents two main challenges. Firstly, motion on the 

orbital plane is to be controlled; therefore, two degrees of freedom, motion along the orbit and along the 

radial direction of the spacecraft, are to be controlled. Conversely, drag force acts only along the orbit of 

the spacecraft, and influences the motion along the radial direction through the coupling in the dynamics. 

Accordingly, the spacecraft system is under actuated when using DD for controlling its dynamics on the 

orbital plane. Secondly, the magnitude of the DD acceleration fluctuates during the maneuver as the 

spacecraft encounters regions of the thermosphere with varying atmospheric density. These variations are 

difficult to predict on board. This means that the control force (drag force) is difficult to know with 

certainty prior to the maneuver. This works presents methods specially developed for addressing these 

issues. 

This work presents the development of novel nonlinear control strategies, based on the Lyapunov 

approach, to perform spacecraft relative maneuvers at LEO, exploiting atmospheric drag forces. 

Furthermore, a localized predictor based on NNs for the estimation of future values of the drag 

acceleration experienced by spacecraft along its orbit is also developed as complement for the Lyapunov 

controllers. The use of the predictor will provide the guidance and control systems with estimates of the 

available drag force along the future orbit of the spacecraft. Such tools will provide a framework from 

which autonomous propellant-less spacecraft relative maneuvering using atmospheric DD acceleration 

can be realized.  

The problem of designing a control system for the maneuvering using DD becomes the problem of 

designing a real-time logic (i.e., the control action is computed as the maneuver progresses) to command 

the deployment or retraction of the drag surfaces, with the intent of forcing the satellites to follow a 

desired trajectory, a reference model or simply regulate to a desired final state. The sought-for logic needs 



to be based on the assumption that the control is either positive maximum, negative maximum, or zero, 

neglecting the time required to deploy or retract the drag surfaces. In essence, a Lyapunov function of the 

tracking error is selected, and the control signal is chosen so that the tracking error converges to zero (i.e., 

the first order time derivative of the Lyapunov function is negative), thus, the nonlinear dynamics of the 

system (that is the real motion of the spacecraft) are forced to follow a desired trajectory, reference model 

or desired final state (regulation). This simplifies the control problem, since the desired trajectory can be 

designed using controlled linear dynamics approximating the reality of spacecraft relative motion. The 

controllers developed by the author build upon and improve work presented and tested in [2-4].  

In order to enhance the performance of the Lyapunov controller, a way for adapting the Lyapunov 

function, in terms of the amount of drag acceleration necessary for stability, was developed. The 

definition of appropriate Lyapunov functions is a challenge that varies from problem to problem, and a 

widely studied theory exists (see [5-7]). In this work, a quadratic Lyapunov function of the tracking error 

is defined, and its positive definite matrix is changed using adaptations, effectively changing the 

Lyapunov function in real-time to improve controller performance (control effort and maneuver duration) 

during the maneuvers. Two adaptation strategies were developed, the switching adaptation and the 

optimized adaptation. The adaptations are achieved through analytical expressions giving the dependence 

of the critical value (minimum magnitude of the DD acceleration necessary to retain Lyapunov stability) 

on the chosen stable linear model. By means of these relationships, the amount of DD acceleration 

necessary to maintain stability is reduced while maneuvering, achieving a better control authority margin 

in real-time. Overall, the development of the adaptive Lyapunov controllers provides a valuable method 

that can be implemented onboard real spacecraft, even small spacecraft, with limited computing 

capabilities. In fact, the Lyapunov controllers require only onboard measurements (relative position and 

velocity) that would be available during flight. 

To develop the density predictor, a similar approach to that of Stastny et al. [8] was used in this work. 

However, NNs are used instead of a linear model. NNs are capable of forecasting nonlinear behaviors 

since they contains nonlinearities in their neurons, and therefore it have the potential to accurately model 

the nonlinear behavior of the density along the orbit of the spacecraft. To train, validate, and test the NNs, 

density data from the CHAllenging Minisatellite Payload (CHAMP, see [9]) mission was used.  

The main contributions of this projects to the state of the art are: 

1) Analytical expressions for: 

a.  A DD control law, which dictates the activation of the drag surfaces, based on Lyapunov 

principles (presented in [10]). 

b. The magnitude of the DD acceleration that ensures stability in the sense of Lyapunov for 

the system (critical value), presented in [11, 12]. Paper [11] was the winner of the best 



student paper award for the category Spacecraft GNC at the 1st International Academy of 

Astronautics Conference on Dynamics and Control of Space Systems and was later 

published in the Acta Astronautica Journal as [12]. 

c.  The partial derivatives of the critical value of the DD acceleration in terms of Q 

(Lyapunov equation matrix), and Ad (reference linear dynamics matrix). These 

derivatives were first introduced for the case of regulation only in [11, 12],  and later 

generalized for tracking a trajectory or a reference model in [13, 14]. Matrices Q and Ad 

are independent variables that are chosen by the designer in the development of the 

Lyapunov control law. 

2) Adaptation strategy, based on the partial derivative of the critical value in terms of matrix Ad, 

which chooses in real-time an appropriate positive definite matrix P in a quadratic Lyapunov 

function, such that it reduces the critical value (presented by the author in [11, 12]). 

3) A second adaptation strategy also based on the same partial derivative, which chooses an 

appropriate positive definite matrix P in a quadratic Lyapunov function, such that it 

minimizes the critical value. 

4) Demonstration of feasibility of the approach via numerical high fidelity orbital simulations 

using STK for three different maneuvers: a re-phase, a fly-around and a rendezvous  

5) Development of neural network-based localized models, that are capable of forecasting the 

density to be encountered by a spacecraft along its orbit for prediction windows of one, eight 

and 32 orbits into the future (i.e. approximately 90min, 12hr and two days respectively), 

presented by the author in [15]. 

6) Appropriate design of the NN structure using different parameters such as the sampling rate 

of the data, the number of neurons in the hidden layer and the number of delays of the input. 

7) Tests of the NN predictors over periods of high and low solar and geomagnetic activities. 

8) Comparison of the results of the NN predictors with a simple persistence model, a linear 

model, JB2006, and HASDM (the latter three obtained from [8]) for the one-orbit forecast. 

The following assumptions were made in the developments of this project: 

 Two spacecraft (target and chaser) are considered, which have the ability of changing their 

ballistic coefficients by deploying or retracting a set of surfaces. 

 The discussion in this work will be limited to in-plane motion, assuming that no out-of-plane is 

present, or that it is controlled with different means.  

 The drag surface deployment/retraction time is assumed to be negligible with respect to the 

duration of the maneuvers. Thus, it is assumed the drag surfaces deploy/retract instantly, 

generating a bang-off-bang control profile, as suggested in [2, 3, 16 and 17,].  



 The attitude is stabilized by other means than DD. 

This document is organized as follows. Section 2 presents all the original developments in this project, 

including: the Lyapunov controller, the adaptive and adaptive optimized Lyapunov controllers, and the 

NN based predictors. Section 3 summarizes and comments the results of this work, including: the results 

from the STK simulations of the relative maneuvers using the controllers developed and the results of the 

tests done to the NN predictors. Finally, section 4 draws the conclusions. 



2. Procedure 

 In this work the spacecraft relative motion is represented in the local vertical local horizontal (LVLH) 

reference frame. In this frame the origin of this frame orbits with the target spacecraft, x points from Earth 

to the target spacecraft (virtual or real), z points along the angular momentum vector of the target’s orbit, 

and y completes the right-handed frame. The following equations were used for represent the relative 

motion dynamics for a chaser and target spacecraft in the LVLH frame: 
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The magnitude of the relative acceleration caused by the differential aerodynamic drag for the 

spacecraft system (target and chaser) is given as: 

 21

2
Drel sva B    (2) 

where ΔB is the difference in ballistic coefficients between the target and chaser. The ballistic coefficient 

is defined as 

 DC S
B

m
   (3)  

Furthermore, the Schweighart and Sedwick [18] linear model was used to create the reference model 

for the development of the controller. This model assumes that the target’s orbit is circular, that the only 

perturbation acceleration is caused by the J2 perturbation, and that the separation between spacecraft is 

small compared to the radii of their orbits. Schweighart and Sedwick model can be formulated as the 

following system: 
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In essence the Lyapunov controller used in this work forces a nonlinear model to follow a stable linear 

reference system. A quadratic function of the tracking error (difference between the state of the nonlinear 

and the stable linear reference systems) is defined. Afterwards a control law aimed to satisfy the 

Lyapunov theorem as defined in [19]. The stable linear reference system can be tracking a desired 

guidance trajectory or can be regulated; furthermore the stable linear reference system can be replaced by 

a desired guidance trajectory or by a constant state vector.  
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where P is a symmetric positive definite matrix and e is the tracking error vector, û is the command 

sent to the surface actuators, the matrix Q is chosen such that a Lyapunov equation is satisfied 

(Ad
T
P+PAd=-Q), and the matrices Ad and B represent a stable linear reference dynamics (in this work the 

Schweighart and Sedwick stabilized using an LQR).  

The resulting control law presented in [10] can be expressed as: 

 ˆ ( )u sign  T
e PB   (6) 

It is worth emphasizing that all the components in this control law would be available in real-time 

onboard a spacecraft. For the actual implementation of the controller this activation strategy is applied 

every 10 minutes, to give the drag forces enough time to change the net accelerations of the spacecraft. 

A critical value (aDcrit) of differential drag that is needed to maintain stable Lyapunov control was 

developed in [11, 12]. This critical value is given as: 
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The analytical expression for the partial derivative of the critical value with respect to the matrix Ad (in 

Equation (8)) was developed in [11, 12]. The matrix Ad is set by design, so it can be manipulated to 

reduce the value of the critical value during the maneuver, provided that it remains Hurwitz. The element 

of matrix Ad, to which aDcrit is the most sensitive (Abc, the entry with the largest partial derivative) is 

identified by calculating the partial derivative. 
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For the details on the derivation of Equation (8) refer to [11, 12]. 



2.1 Adaptive and optimized adaptive Lyapunov controllers 

To improve the performance of the Lyapunov controller an adaptation and an optimized adaptation of 

the drag surface activation strategy (Equation (6)) were developed. Both adaptations rely (aDcrit) and the 

partial derivative (Equations (7) and (8)). 

2.1.1  Adaptation strategies 

Changing the elements of matrix Ad will change the critical value, which determines how much 

magnitude of the relative drag acceleration is needed to attain Lyapunov. Furthermore, modifying this 

matrix will also affect the control law via the matrix P (see Equation (6)) thus changing how the 

Lyapunov controller reacts to the tracking error. This suggest that by changing this matrix the 

performance of the controller can be influenced. Two different adaptations were developed to enhance the 

performance of the Lyapunov controller taking advantage of this feature. These adaptations seek to 

reduce the critical value via modifications to matrix Ad as the maneuver progresses. Both adaptations are 

implemented as illustrated in Figure 1. The adaptations are implemented such that the modified Ad matrix 

is still stable and are applied at the same time as the activation strategy, which is every 10 minutes. 

 

Figure 1. Control Strategy diagram, the text in bold represents the onboard control calculations, occurring every 10 minutes. 

By calculating the partial derivative (Equation (8)) the entry of the matrix Ad, to which aDcrit is the 

most sensitive, is identified (that entry which has the partial derivative with the largest magnitude), which 

is defined as: 
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Once this entry is identified, it is switched to a small value (δA =10
-6 

which is in the same order of 

magnitude of the other entries of Ad). The sign of this modification is chosen such that it reduces the 

derivative of aDcrit, thus inducing a downward trend in the behavior of the critical value for the magnitude 

of the differential acceleration. By reducing this critical value, the overall robustness of the controller is 

improved since the control margin (the difference between the actual value of the DD acceleration and the 

critical value) is increased. The adaptive variations in Ad are expressed as: 
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where κA is defined by: 
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The controller resulting from applying this adaptation to the Lyapunov control law developed in the 

previous section is called adaptive Lyapunov controller. 

A further refinement of the adaptation strategy was achieved by including an optimization method, 

more specifically MATLAB’s fmincon function, in the adaptation. The fmincon tool is an optimization 

method that finds the minimum of a constrained multivariate function. 

For this adaptation the partial derivative defined in is again calculated and just as in the switching 

adaptation, the element of matrix Ad, to which aDcrit is the most sensitive (Abc) is found. Afterwards, the 

fmincon function is used to minimize aDcrit in terms of Abc. The optimization problem solved by fmincon 

can be formulated as: 

 
 minimize      

subject to     

bc

Dcrit bc
A

bc

a A

lb A up 
  (12) 

where and lb and up are the lower and upper bounds for Abc. These bounds were chosen to be -10
-6 

and 

10
-6 

which are in the same order of magnitude of the other entries of Ad. The solution of the optimization 

problem gives the sign and magnitude (δAOp) with which Abc is modified. The adaptive variations in Ad are 

expressed as: 
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where κA and is defined in Equation (11) 

It should be noted that the adaptations occur every 10 minutes and that that for a bang-off-bang control 

the Δt from Equations (10) and (13) is essentially zero. 



2.2 Density Predictors 

The NN density predictor, developed in this work, uses density measurements or estimates on a given 

orbit and a set of proxies for solar and geomagnetic activities to predict the value of the density along the 

future orbit of the spacecraft.  

2.2.1 Neural network used 

A time-delay feed-forward Neural Network structure was chosen for the development of the density 

predictor. This NN architecture does not include any feedback loops, hence the feed-forward part of its 

name. This NN architecture contains a set of delays at the input layer that allow for retention of the 

evolution of the inputs in time, and enhances the ability of the network for forecasting applications. 

Furthermore, the NN predictor contains two layers (hidden or input layer, and output layer). The output 

layer contains one single linear neuron. The number of neurons and delays in the hidden layer were 

determined by testing different configurations. The results of these experiments are included in the results 

shown in section 3. A diagram of a time-delay feed-forward Neural Network is shown in Figure 2. 

 

Figure 2. Diagram for a FTDNN with two layers, two inputs (one with two delays and the second one with one), two nonlinear 
neurons in the input layer and one linear neuron in the output layer. 

In this application, the input to the NN is the present value of the density and the output is the 

predicted value over a predefined prediction window. Additional inputs such as the current values of the 

solar and geomagnetic indices (Dst and F10.7) can also be included. The inputs are delayed a defined 

number of times inside the NN in order to capture some of their time evolution. Such formulation is 

shown in the following expression: 
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where f is the overall nonlinear function of the neural network,   is the measured density,  ̂ is the 

predicted density value (from NN output), Wp is the prediction window, ts is the sampling period of the 

data, t is the time, and D is the number of delays in the hidden layer.  

The Levenberg-Marquardt algorithm (see [20, 21]) was used to train the NNs. This algorithm, which is 

included in MATLAB's Neural Network Toolbox ([22]), was chosen since it often has higher rates of 

convergence than the other algorithms provided in the Toolbox. The mean squared error (MSE), as 

explained in Equation (15), was selected as the performance function.  

  
2

1

1 sn

i i

is

MSE
n

 


    (15) 

where ns is the number of samples, and   is the target value 

2.2.2 Density data used 

The use of NNs requires data sets for training, validation, and testing the model’s performance. The 

training and validation sets must contain data covering the different behaviors to be modeled by the neural 

network. CHAMP density data was used for this work. Measurements from the onboard accelerometer 

onboard the CHAMP satellite allow for the estimation of the density data. These data is available online 

and was obtained from [23]. 

For each NN the training density data was divided into two segments: one segment of past values, 

assumed to be available for the training and validation of the neural network; and one segment of future 

values, which are values of density that would not be available during training and validation, but instead 

are used exclusively for testing the NNs. The past values were sampled randomly and 70% were used for 

training, and the remaining 30% for validation. The available density data were not evenly distributed in 

time; therefore, for implementing the neural network, a linear interpolation was applied to make sure that 

there was a constant difference in time between consecutive samples in the data. The values of the density 

are in the order of magnitude of 10
-12

 kg/m
3 

for day 140 of 2002. This results in numerical problems 

during the training of the NNs. To address this issue, the natural logarithm of the density values was used 

for the NNs instead of the density values themselves. Another advantage of using the natural logarithm, 

shown in [24], is that it often stabilizes the variance of the series, which allows for better modeling of the 

time series. 

Several different periods of interest for training, validation, and testing the NNs were identified. 

Stastny et al. [8] chose two representative days for low and high geomagnetic activities for testing his 

linear model and for comparing it to JB2006 and HASDM. The first of these days was day 141 of 2002; 

during this day there was very low geomagnetic activity (Dst=-16, ap=10 and F10.7=190.4). The second 

day used by Stastny et al. [8] was day 276 of 2001. During this day there was a moderate geomagnetic 



storm, and as a result there was a higher geomagnetic activity (Dst =-107, ap=69 and F10.7=191.8) For 

obtaining the linear model, Stastny et al. [8] used the data from day 140 (Dst =-12,  ap=10 and 

F10.7=175.4). This same data set was used to train, validate and test the NNs. These data sets included 

n=1080 data points for each day with a sampling rate of 80 sec. 

To study the long-term performance of the NNs, it was decided to test them over one-year intervals. 

Out of the years that CHAMP was collecting data, years 2003 and 2007 were of special from the point of 

view of space weather and therefore were selected for testing. During 2003 (Dst =-22, ap=21.8 and 

F10.7=128) the geomagnetic activity was the highest of that solar cycle (as explained in [25]). In contrast, 

during 2007 (Dst =-8, ap=7.5 and F10.7=73) the solar cycle went through a period of very low activity 

(solar minimum, see [26]) and therefore the solar and geomagnetic activities were very low. The training 

and validation sets consisted of data from years previous to the testing years. Specifically, data from 2002 

was used to train the NN for 2003 prediction, and data from 2006 was used to train the NN for 2007 

prediction. For these long-term experiments a sampling rate of 120 sec was used. Figure 3 shows the daily 

averaged values for Dst, ap, and F10.7 during 2003 and 2007.  

 

Figure 3. Dst, ap and F10.7 indices averaged daily for years 2003 (left) and 2007 (right). 

2.2.3 Solar and geomagnetic indices 

By including additional inputs other than the present density values, the performance of a NN as a 

predictor improves, provided that the output of the NN is a function of these inputs. Because the density 

is driven by the solar and geomagnetic activities, one proxy for each of these was selected as additional 

inputs. Out of the many possible choices (S10, M10, Mg II) F10.7 was assumed to be a suitable proxy for the 
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solar activity affecting the density. This is a valid assumption since as pointed out by [27] there has not 

yet been any proof of one index been clearly superior to any other for satellite operations. Dst was 

assumed to be a valid proxy for geomagnetic activity. The ap index was not used since, as Figure 3 

shows, Dst and ap are closely related. Furthermore as pointed out in [28], replacing ap for Dst reduced 

density errors especially during geomagnetic storms for Jacchia 70, NRLMSIS and JB 2008. 

The indices were averaged hourly and were included in the corresponding training, validation, and 

testing sets. No interpolation was necessary for the indices since their sampling rate (hourly averaged 

values) was much larger than the sampling rate of the density (80 and 120 seconds) and there were no 

gaps in the data. For the one orbit prediction case at a sampling rate of 80 seconds, 68 samples per 

window are used; for the eight orbits case at a sampling rate of 120 seconds, 360 samples per window are 

used; and for the 32 orbits case at a sampling rate of 120 seconds, 1440 samples per window are used. As 

with the density values, during operation the NNs only have access to present values of the indices. The 

values for the Dst and F10.7 indices used in this work were obtained from [29]. 



3. Numerical Results 

3.1 Maneuver simulations 

The three different Lyapunov controllers, developed in the previous section were tested and evaluated 

using numerical simulations. The guidance and control formulations have been programmed in 

MATLAB. These algorithms interact with STK via STK Connect. STK’s High-Precision Orbit 

Propagator (HPOP) was used for modeling the mechanics of the maneuver, including J2 perturbations, 

solar pressure radiation and variable atmospheric drag using the empirical NRLMSISE-00 model. The 

linear reference model and guidance trajectories are modeled using Simulink in the initialization part of 

the simulation (prior to running STK). The simulation architecture can be seen in Figure 4. For all of the 

simulations, the non-adaptive version (with constant P and Ad) was compared with the adaptive and 

optimized adaptive Lyapunov controllers (with variable P and Ad). For the re-phase and rendezvous 

maneuvers, the simulations were stopped when the spacecraft were within 10 m of the desired final state. 

For the fly-around maneuver the simulation was stopped after 2.5 orbital periods after the guidance 

reached the final equilibrium orbit. 

 

Figure 4. Simulation Diagram. 

The three controllers can be implemented in the following configurations: 

1) The controller forces the nonlinear system to go to a desired final state (regulation). 

2) The controller is used to force the nonlinear system to directly track a generated guidance 

trajectory (no linear dynamics is defined). 

3) The controller forces the nonlinear system to track the trajectory of the reference model 

which is tracking the generated guidance trajectory. 



The initial orbital elements of the target (center of the LVLH frame) and other parameters for the 

numerical simulations are shown in Table 1. The target and chaser are assumed to be identical spacecraft, 

therefore they have the same ballistic coefficient and mass, for each surface configurations. The initial 

relative position and velocity of the chaser in the LVLH frame are shown in Table 2. For all simulations 

the initial Q matrix was the identity matrix times 10
2
. 

Table 1. Spacecraft orbital Parameters and geometry. 

Parameter Value 

Target’s inclination (deg) 98 

Target’s semi-major axis (km) 6778 

 Target’s right ascension of the ascending node (deg) 262 

Target’s argument of perigee (deg) 30 

Target’s true anomaly (deg) 25 

Target’s eccentricity 0 

Maximum Ballistic Coefficient, surfaces deployed (m
2/kg) 0.625 

Minimum Ballistic Coefficient, surfaces retracted (m
2/kg) 0.075 

Mass (kg) 10 

 

Table 2. Initial conditions in the LVLH frame. 

Parameter Rendezvous Fly-around  Re-phase 

x (km) -1 0 0 

y (km) -2 -4.25 -1.9 

x (km/sec) 4.8E-07 0 0 

y (km/sec) 1.70E-04 0 0 

 

These initial conditions where generated by selecting the orbits of the target and chaser and then 

calculating initial state vector (position and velocity of the chaser relative to the target).  

3.1.1 Re-phase maneuver 

For this simulation in STK, the initial difference in the y was -1.9km and the desired final difference 

was three km. The three controllers (Lyapunov, adaptive Lyapunov, and optimized adaptive Lyapunov 

controllers) were used in simulations for the re-phase maneuver. The controllers are used to regulate the 

error between the simulated relative positions and velocities and the desired final relative positions and 

velocities. For this maneuver the RLQR value used to obtain the initial Ad was 10
18

. The trajectories in the 

LVLH are compared in Figure 5. Figure 6 shows the control signals for the three controllers. Tracking 

error plots are shown in Figure 7. 



 

Figure 5. Re-phase maneuver trajectories in the x–y plane: (left) complete maneuver and (right) final stages of the maneuver. 

 

Figure 6. Re-phase maneuver control signals: (top) non-adaptive Lyapunov controller, (middle) adaptive Lyapunov controller and 
(bottom) adaptive optimized Lyapunov controller. 
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Figure 7. Tracking error over the entire re-phase maneuver: (top) x error and (bottom) y error. 

3.1.2 Fly-around maneuver 

Again the three controllers (Lyapunov, adaptive Lyapunov, and optimized adaptive Lyapunov 

controllers) have been used in simulations for the fly-around maneuver. In this case the controllers force 

the nonlinear dynamics to follow the desired fly-around guidance and not just to converge to a final state 

(second configuration). Moreover, the simulations are stopped 2.5 orbital periods after the guidance 

reaches the final equilibrium orbit. For this maneuver the RLQR value was 1.6*10
18

. The guidance selected 

for the fly-around maneuver is based on Clohessy-Wiltshire equations and was obtained from [30]. The 

trajectories in the LVLH are compared in Figure 8, while Figure 9 shows the control signals for the three 

controllers. Tracking error plots are shown Figure 10. 
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Figure 8. Fly-around trajectories in the x–y plane: (left) complete maneuver and (right) final stages of the maneuver. 

 

Figure 9. Fly-around maneuver control signals: (top) non-adaptive Lyapunov controller, (middle) adaptive Lyapunov controller 
and (bottom) adaptive optimized Lyapunov controller. 
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Figure 10. Tracking error over the entire fly-around maneuver: (top) x error and (bottom) y error. 

3.1.3 Rendezvous maneuver 

Of the three maneuvers simulated, the rendezvous maneuver is the most challenging using DD since it 

requires reducing an initial difference in the x direction as well as in the y direction. Since the system is 

underactuated, this requires introducing large errors in the y direction. For this maneuver the controllers 

have been implemented using the reference model tracking (third configuration).  

A guidance trajectory based on Clohessy-Wiltshire equations has been selected for the rendezvous 

maneuvers. This guidance trajectory was made following the method described in [3] which uses a 

constant value for the density. In this simulation the controller forces the nonlinear system to track the 

trajectory of the reference model which is tracking the analytically generated guidance trajectory (third 

configuration). For this maneuver the RLQR value was 1.6*10
17

. The trajectories in the LVLH are 

compared in Figures 11, 12 and 13. Figure 14 shows the control signals for the three controllers. Tracking 

error plots are shown Figure 15.  
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Figure 11. Rendezvous trajectories for the non-adaptive controller in the x–y plane: (left) complete maneuver and (right) final 
stages of the maneuver. 

  

Figure 12. Rendezvous trajectories for the adaptive controller in the x–y plane: (left) complete maneuver and (right) final stages 
of the maneuver. 
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Figure 13. Rendezvous trajectories for the optimized adaptive controller in the x–y plane: (left) complete maneuver and (right) 
final stages of the maneuver. 

 

Figure 14. Rendezvous maneuver control signals: (top) non-adaptive Lyapunov controller, (middle) adaptive Lyapunov controller 
and (bottom) adaptive optimized Lyapunov controller. 
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Figure 15. Tracking error over the entire rendezvous maneuver: (top) x error and (bottom) y error. 

3.1.4 Controller performance assessment 

The metrics used to evaluate the performance of the controllers are the number of switches in the 

control (control effort), the duration of the maneuver, the means for the critical and actual value of the DD 

acceleration, and the difference between these two values (control margin). The performance metrics for 

the simulations are shown in Table 3. 
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Table 3. Performance metrics for all maneuvers 

Metric 
Re-phase 

(Regulation) 

Fly-around 

(Tracking 

Trajectory) 

Rendezvous (Tracking 

Dynamics) 

Non-

Adaptive 

Control 

changes 
124 48 79 

Time (hr) 30.7 13.2 43.6 

Drag Mean 

Critical value 

(m/s2) 

-2.93E-07 -5.91E-06 -1.43E-04 

Mean Actual 

Drag(m/s2) 
9.61E-06 3.38E-05 3.42E-05 

Margin(m/s2) 9.90E-06 3.97E-05 1.77E-04 

Adaptive 

Control 

changes 
107 45 37 

Time (hr) 27.4 13.2 35.4 

Drag Mean 

Critical value 

(m/s2) 

-6.54E-07 -6.36E-06 -1.81E-04 

Mean Actual 

Drag(m/s2) 
9.52E-06 3.38E-05 3.49E-05 

Margin(m/s2) 1.02E-05 4.01E-05 2.16E-04 

Optimized 

Adaptive 

Control 

changes 
73 46 35 

Time (hr) 19.8 13.2 35.1 

Drag Mean 

Critical value 

(m/s2) 

-2.05E-06 -6.12E-06 -1.82E-04 

Mean Actual 

Drag(m/s2) 
9.44E-06 3.38E-05 3.46E-05 

Margin(m/s2) 1.15E-05 3.99E-05 2.17E-04 

 

As shown in Figures 5, 7, 11, 12, 13 and 15 for the re-phase and rendezvous maneuvers, all three 

controllers forced the chaser and target spacecraft to be within 10m of their desired final state. As seen in 

see Figure 8 for the fly-around maneuver the two adaptive controllers forced the system to reach an orbit 

close to the desired equilibrium final orbit (within ~50m); however, the non-adaptive reached an orbit 

with less precision than the other controllers (within ~300m). Furthermore, as can be observed in the 

tracking error plots (Figures 7, 10 and 15) both adaptive controllers produce smaller oscillations on the 

error, especially toward the end on the maneuvers, this produces smoother trajectories; even though, the 

control force is varying (since the density is varying). 

The use of the adaptive controller reduced the control effort required to perform all three maneuvers 

with improvements relative to the non-adaptive of 13.7%, 6.3%, and 53.2% for the re-phase, fly-around 

and rendezvous maneuvers respectively. Similarly, the use of the optimized adaptive controller reduced 



the control effort by 41.1%, 4.2%, and 55.7% in comparison with the non-adaptive for the re-phase, fly-

around and rendezvous maneuvers respectively.  

Likewise, the use of adaptive controller also reduced the duration of the maneuver with improvements 

of 10.9%, and 18.8% for the re-phase and rendezvous maneuvers respectively. Similarly, the use of the 

optimized adaptive controller reduced the duration of the maneuver with improvements of 35.7%, and 

19.6% over the non-adaptive for the re-phase and rendezvous maneuvers respectively. There were no 

improvements in duration for the fly-around, since the simulations were not stopped when within 10m of 

the desired final position, but after 2.5 orbital periods after reaching the desired equilibrium relative orbit.  

Furthermore, the adaptive controller also was able to increase the control margin by 2.9%, 1%, and 

18.1% over the non-adaptive for the re-phase, fly-around, and rendezvous maneuvers respectively. 

Similarly, the optimized adaptive controller increased the control margin over the non-adaptive by 13.9%, 

0.5%, and 18.4% over the non-adaptive for the re-phase, fly-around, and rendezvous maneuvers 

respectively.  

Overall both adaptive and optimized adaptive controllers gave better results than the non-adaptive 

controller. The optimized adaptive gave better results than the adaptive for the re-phase (Regulation) and 

rendezvous (Tracking Dynamics) maneuvers; however, for the case of the fly-around (Tracking 

Trajectory), the performance metrics of the optimized adaptive were slightly worse than the adaptive. 

Nonetheless, Figure 10 shows that during the maneuver the errors were smaller for the optimized 

adaptive, so perhaps this came at a cost of higher slightly higher actuation (one more switch in the drag 

surfaces configuration).  

3.2 Density Predictors 

The training, validation, and testing of the NNs was done in MATLAB using the Neural Network 

Toolbox. As a benchmark for all the tests, a model using the persistence method was used. The 

persistence method is a very simple technique for forecasting in which the prediction is equal to the input. 

In other words, a predictor forecasting the density using the persistence method will predict the density in 

the future to be the same as it is in the present, so if the prediction window is one orbit, then each 

predicted orbit is equal to the previous measured orbit.  

To assess the performance of the different models, different metrics were used: the MSE (shown in 

Equation (15)), the mean of the ratio between the target and the outputs, its standard deviation and the 

Pearson correlation coefficient of the targets to the model outputs (Rp).  



3.2.1 Different number of neurons, delays and sampling rates 

Given the selected structure of the NN predictors, the appropriate number of neurons, delays in the 

hidden layer, and the data sampling rate for the localized density forecasting problem were found. This 

was accomplished empirically by trying different combinations. All the tests performed for this purpose 

were run on days 141 of 2002 and 276 of 2001, with the training and validation sets being day 140 of 

2002. As mentioned before, these days cover high and low geomagnetic activity and were used also by 

Stastny et al. [8] to test his linear model. To find the appropriate number of neurons and delays in the 

hidden layer and the sampling rate the NN shown in Figure 16 was used.  

 

Figure 16. Neural network diagram where N and D are the numbers of neurons and delays in the hidden layer. 

To find the appropriate number of neurons in the hidden layer several tests were performed in the 

sampling rate and the number of delays were fixed and the number of neurons was varied. Afterwards, the 

same procedure was followed for the number of delays and the sampling rate. The results for these tests 

are presented in [15]. The best results were obtained with one neuron in the hidden layer and enough 

delays to store from ¼ to one prediction window, while there was no significant difference in the 

performance when the sampling rate was below 180 seconds.  

3.2.2 Predicting one orbit into the future on days 241 of 2002 and 276 of 2001 

Once the appropriate structure of the NN was found several different NNs were tested again on days 

141 of 2002 and 276 of 2001. This was done to evaluate the improvements in performance by increasing 

the size of the training and validation sets from one day to a year and also by using the solar and 

geomagnetic indices (Dst and F10.7) as additional inputs. The one year training and validation data set used 

for testing the networks on day 141 of 2002 contained the data from the 365 preceding days (day 140 of 

2001 to day 14 of 2002). The one year training and validation data set used for testing the networks on 

day 276 of 2001 contained the data from year 2002 (day 1 of 2002 to day 365 of 2002), since the 

CHAMP data did not went back a year before day 276 of 2001. Even though this means that the NN used 

was trained on data corresponding to the future of day 276 of 2001, the training data and validation data 

set is still different to the testing set which makes the test valid (of course for practical implementation of 

the NNs the training and validation set would always be past and therefore available values). A sampling 



rate of 80 sec was used since it is the same used by Stastny et al. [8]. The results of the tests for days 141 

of 2002 and 276 of 2001 are summarized in Table 4. As a benchmark the performance of a persistence 

model are also included. The persistence method is a very simple technique for forecasting in which the 

prediction is equal to the input. 

Table 4. Results for predicting one orbit into the future. 

Testing 

Data Set 

Model 

Configuration 
MSE Rp 

Mean 

target/output 

Stdev 

target/output 

Day 141 

2002 

CHAMP 

NN, preceding 

365 days for 

Training 

0.0108 0.9843 0.9998 0.0039 

NN, preceding 

365 days for 

Training, Dst and 

F10.7 

0.0108 0.9842 0.9998 0.0039 

NN, day 140 of 

data for Training 
0.0156 0.9774 1.0008 0.0046 

Persistence Model 0.0234 0.9685 1.0003 0.0058 

Linear model* N/A N/A 1.0058 0.0822 

HASDM* N/A N/A 0.8662 0.1204 

JB2006* N/A N/A 0.8564 0.095 

Day 276 

2001 

CHAMP 

NN, year 2002 of 

data for Training 
0.0229 0.9086 0.9999 0.0058 

NN, Year 2002 of 

data for Training, 

Dst and F10.7 

0.0225 0.9099 0.9999 0.0058 

NN, day 140 Year 

2002 of data for 

Training 

0.0229 0.9106 0.9995 0.0058 

Persistence Model 0.0328 0.8718 1.0001 0.007 

Linear model* N/A N/A 1.0094 0.0822 

HASDM* N/A N/A 0.8415 0.1344 

JB2006* N/A N/A 0.6471 0.1355 

 

*Obtained from [8] 

For the 2001 scenario, training data from 2002 is used, as Stastny et al. did in their work. Training 

with future values and "predicting" past values is valid from the point of view of neural network, since the 

training/validation and testing data sets are still different. The results in Table 4 indicate that the global 

models (HASDM and JB 2006 results obtained from Stastny et al. [8]) have large biases in their results 

for the test days. This causes their performance to be worse than the performance of all the other models 

including the persistence model. The NN predictors give significantly better results than the linear model 

from Stastny et al. [8]), the global models, and the persistence model. For day 141 of 2002, by increasing 



the size of the training and validation sets, the performance of the NNs increases; however, for day 276 of 

2001 there is not a significant improvement by increasing the size of the training and validation sets nor 

by including the solar and geomagnetic indices. The addition of the indices does not benefit the NNs 

because the number of delays (17 which corresponds to ¼ of the prediction window) cannot capture more 

than one value in time of the indices since, the indices are averaged hourly. This might be solved by 

increasing the number of delays. An alternative solution would be retaining the same number of delays, 

but space them non-uniformly in time. 

For day 141 of 2002, using data from one year to train and validate the NN provided the best results. 

The actual output of this NN and the targets are shown in Figure 17 along with the prediction error. For 

day 276 of 2001, the NN that uses the additional inputs (Dst and F10.7) and that was trained and validated 

using the data from one year yielded the best results. The actual output of this neural network, the targets, 

and the prediction error are shown in Figure 18. 

 

 

Figure 17. Neural network response for best case with a prediction window of one orbit over day 141 of 2002. 
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Figure 18. Neural network response for best case with a prediction window of one orbit over day 276 of 2001. 

3.2.3 Predicting eight and 32 orbits into the future 

For most applications of the NN density predictors, longer prediction windows are desired. For this 

reason additional NN predictors were trained, validated, and tested for predicting eight and 32 orbits into 

the future (approximately half a day and two days). For these results, the NNs were tested on years 2003 

and 2007, in order to evaluate their performance over much wider data sets including periods of low and 

high solar and geomagnetic activities. As before, the use of additional inputs (Dst and F10.7) was studied 

along with the use of different numbers of delays. Since having different sampling rates, as long as they 

are below 180 sec, does not affect significantly the NN performance, a sampling rate of 120 sec was used 

in order to reduce time for training and validation the NNs. The results are summarized in Tables 5 and 6 

for the prediction windows of eight and 32 orbits respectively.  
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Table 5. Results for predicting eight orbits into the future. 

Testing 

Data Set 

Model 

Configuration 
MSE Rp 

Mean 

target/output 

Stdev 

target/output 

CHAMP 

2003 

ANN, 90 delays (2 

orbits), 1 year 2002 

of data for Training 

0.0433 0.8971 1.0007 0.0078 

ANN, 90 delays (2 

orbits), 1 year 2002 

of data and Dst and 

F10.7 for Training 

0.0429 0.8976 1 0.0078 

ANN, 360 delays (8 

orbits), 1 year 2002 

of data and Dst and 

F10.7 for Training 

0.0401 0.9044 0.9999 0.0075 

Persistence Model 0.2614 0.4037 1.0002 0.0192 

CHAMP 

2007 

ANN, 90 delays (2 

orbits), 1 year 2006 

of data for Training 

0.0417 0.9093 1.0002 0.0075 

ANN, 90 delays (2 

orbits), 1 year 2006 

of data and  Dst and 

F10.7 for Training 

0.0407 0.9114 1 0.0074 

ANN, 360 delays (8 

orbits), 1 year 2006 

of data and Dst and 

F10.7 for Training 

0.0403 0.9122 1 0.0074 

Persistence Model 0.1902 0.6031 1.0001 0.016 

 

The best case included in Table 5 for both years 2003 and 2007 were those obtained with the NN that 

included the additional inputs and that had 360 delays (one prediction window). Figures 19 and 20 show 

the MSE over the entire years 2003 and 2007 for the best cases along with the Dst and F10.7 averaged 

daily. 

 



 

 

Figure 19. MSE for best case with a prediction window of eight orbits and normalized indices over year 2003. 
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Figure 20. MSE for best case with a prediction window of eight orbits and normalized indices over year 2007. 

Table 6. Results for predicting 32 orbits into the future. 

Testing 

Data Set 

Model 

Configuration 
MSE Rp 

Mean 

target/output 

Stdev 

target/output 

CHAMP 

2003 

ANN, 360 delays (8 

orbits), 1 year 2002 of 

data for Training 

0.0917 0.7702 1.0013 0.0113 

ANN, 360 delays (8 

orbits), 1 year 2002 of 

data and Dst and F10.7 

for Training 

0.0895 0.774 1 0.0112 

Persistence Model 0.1813 0.5874 1.0001 0.016 

CHAMP 

2007 

ANN, 360 delays (8 

orbits), 1 year 2006 of 

data for Training 

0.1564 0.6058 1.0009 0.0145 

ANN, 360 delays (8 

orbits), 1 year 2006 of 

data and Dst and F10.7 

for Training 

0.1515 0.6215 1.0002 0.0143 

Persistence Model 0.603 -0.2582 1.0005 0.0286 
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As indicated in Table 6 for the 32 orbit predictions the NNs yielded a better performance over the high 

activity period (2003) than the low activity one (2007). This was not observed in any of the other tests 

performed where the performance for both periods was almost the same or better for periods of low 

activity (see Tables 4 5). This indicates that for longer prediction windows over periods of low activity 

other unknown factors affect the density behavior, that are not well represented by the data used by the 

NNs (current value of the density, Dst and F10.7 indices). This is here considered a topic for further 

investigation and beyond the scope of this work. Further investigation may lead to the discovery of 

unknown effects during periods of low activity.  

The best case shown in Table 6 for both years 2003 and 2007 were those obtained with the NN that 

used the Dst and F10.7 indices. The MSE over the entire years 2003 and 2007 for the best cases included in 

Table 6 (32 orbits prediction), along with the Dst and F10.7 averaged daily are shown in Figures 21 and 22 

for years 2003 and 2007 respectively. 

 

 

Figure 21. MSE for best case with a prediction window of 32 orbits and normalized indices over year 2003. 

 

 

 

 

 

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

MSE over one year

Day

M
S

E

 

 
ANN

Persistence Method

0 50 100 150 200 250 300 350
-0.4

-0.2

0

Day

Normalized Solar and Geomagnetic Indices over one year

 

 

Normalized DST

Normalized F10.7



 

 

 

 

Figure 22. MSE for best case with a prediction window of 32 orbits and normalized indices over year 2007. 

One very interesting feature can be observed in Figures 19 and 21. The peaks in the MSE correspond 

to peaks in the Dst index. This indicates that the NN predictors will have larger errors during geomagnetic 

storms. This is further confirmed by the results from the test performed for predicting one orbit into the 

future, in which the performance for the predictions on day 141 of 2002 were always better than the 

performance on day 276 of 2001, during which there was a geomagnetic storm. 

From a computational point of view the training and validation of the NN predictors can be costly 

especially when dealing with large prediction windows (32 orbits into the future). For this reason, for 

future implementation of this work the training and validation processes are not recommended to be done 

onboard. Rather, it is proposed that density values obtained onboard via accelerometers be sent 

periodically to the mission team on the ground for training and validation. Once the weights and biases of 

the trained NN are obtained, they can be uplinked to the onboard computers and then the predictor can be 

used for onboard orbit propagation. The NN could then be re-trained on the ground as necessary.  
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4. Conclusions 

This work developed methods for controlling the relative motion of a target and chaser spacecraft in 

the orbital plane using a differential in their drag accelerations, to enable propellant-less coplanar relative 

maneuvers in LEO. By varying the DD between the chaser, and target spacecraft their relative motion in 

the orbital plane is controlled. These variations are induced by changing the crosswind area of the 

spacecraft. The nature of this variation is assumed to be of bang-off-bang nature with only three possible 

values: maximum differential acceleration, minimum differential acceleration, and zero differential 

acceleration.  

Lyapunov principles are used to develop a control law for the activation of the drag surfaces, thus 

allowing for any co-planar propellant-less spacecraft relative maneuvering, physically realizable with the 

small relative accelerations created by the difference in the drag forces acting on the spacecraft. The 

Lyapunov controller can be implemented by forcing the nonlinear dynamics to track a trajectory, the 

dynamics of a reference model, or to regulate to a desired final state. This allows for the implementation 

of the controller in maneuvers in which a specific path is desired, consequently, opening the possibilities 

for any other maneuver, provided that they are confined to the orbital plane and that they are realizable 

using the small acceleration created by the drag. The analytical nature of the methodology holds the 

promise for future onboard implementation on real spacecraft. 

An analytical expression the magnitude of the DD that ensures stability (critical value) was developed. 

Analytical expressions for the partial derivatives of the DD critical value ensuring Lyapunov stability in 

terms of matrices Q and Ad (chosen by the control designer, i.e., independent variables), were also 

developed. Two adaptations to the Lyapunov control law were developed. These adaptations use the 

partial derivative of the critical value in terms of matrix Ad to find the element of this matrix to which the 

critical value is the most sensitive. In the first adaptation, this element was changed by switching its value 

between fixed values to adapt the control law. In the second adaptation this element was changed to be 

the value that minimized (within a fixed range) the analytical expression of the critical value. The 

adaptations result in a matrix Ad that varies in time, and hence, so does the P matrix in the quadratic 

Lyapunov function. Thus a new term, containing the time derivate of the P matrix, appears in the 

Lyapunov function. An analytical expression for the time derivative of the P matrix (assuming a 

continuous adaptation) was obtained in order to evaluate the impact of this new term in the stability of the 

system. 

STK’s HPOP was used to simulate the nonlinear dynamics of relative motion for spacecraft. In 

simulations the results for the re-phase, fly-around, and the rendezvous maneuvers indicate that the 

implementation of both the adaptive and optimized adaptive Lyapunov controllers allows for smoother 

maneuvers with less duration, less actuation, and greater control margin for the three different controller 



configurations studied with respect to the non-adaptive controller. Furthermore, the optimized adaptive 

offers slightly better performance than the adaptive in terms of maneuver duration and control effort. The 

accuracy achieved with the proposed controllers is unprecedented for DD based relative maneuvering. For 

the rendezvous and re-phase maneuvers all controllers had the ability to take the spacecraft to within 10 

meters of their desired final states, using only the differential in drag. Furthermore, for the fly around 

maneuver both adaptive controllers reached relative orbits very close to the desired final equilibrium 

relative orbit.  

The NN predictors provided significantly better results than a linear model, and the global models 

HASDM and JB2006 for predicting the value of the density one orbit into the future for periods of high 

and low geomagnetic activity. The NN predictors were also tested for predicting eight and 32 orbits into 

the future (about half a day and two days at CHAMP’s orbit). For these tests the performance of the NN 

predictors was evaluated over the years 2003 and 2007, which cover the periods with the high and low 

solar and geomagnetic activities. The performance of the NN predictors decreases as the prediction 

window increases, but even for the 32 orbit case, the results were satisfactory.  

The NN predictors can also use the current value of the Dst (geomagnetic activity) and F10.7 (solar 

activity) indices averaged hourly as additional inputs which resulted in an improvement of the 

performance of the NNs, provided that enough delays were included in the hidden layer to store some of 

the behavior in time of the indices. However, the number of delays cannot be increased beyond those 

required to store one prediction window or the NNs will suffer from overfitting in terms of the density 

values.  

The controllers and the NN predictors are computationally simple and can be implemented onboard 

spacecraft. This would allow for accurate relative motion control using DD and precise onboard orbit 

propagation that can be used for navigation.  
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